Question	Answer	Mark
number		
1(a)	(Total / sum of) Kinetic energy conserved	(1)
1(b)	These diagrams could appear in part c and should be credited in (b)	
		(1)
		(1)
	[allow first mark for any triangle or parallelogram ie do not insist on right angle] right angle labelled or approximately by eye / diagonal should be labelled "before" or "initial" or appropriately recognisable as incoming particle	
1(c)	KE as formula eg $\frac{1}{2}$ mu ² = $\frac{1}{2}$ mv ² + $\frac{1}{2}$ ms ² / p ² / 2m = p ² / 2m + p ² / 2m Recognition of "Pythagoras"	(1) (1)
1(d)(i)	Electric field	(1)
1(u)(l)	Dess work on proton (applies a force, (renal (attract	(1)
	Does work on proton/applies a force /repel/attract	(1)
	qV / Fd / Eq	(1)
1(d)(ii)	Mass of incoming proton larger (than rest mass)	(1)
	Due to moving near speed of light/high speed/high energy/relativistic	(1)
	Alt answer : image not in plane of two protons after the event	(2)
		(max 2)
1(e)	Out of the plane of paper	(1)
	Total for question	11

Question Number	Answer	Mark
2 (a)*	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	Measurement of appropriate quantity e.g .height /distance /time(1)Calculate speed or inferred by an equation(1)Speed on impact(1)	
	Statement of how method shows momentum has been conserved (1) [must include correct mention of mass and velocity]	
	[correct description of measuring velocity directly with a sensor scores first two marks]	4
2 (b)	Collisions inelastic / KE is transferred in collisions (1) to internal energy (of balls) [allow heat] / to KE of middle balls/to sound (1)	
	Eventually stops because all energy is transferred (1)	3
	Total for question	7

Question	Answer	Mark
Number		
*3	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	No external/unbalanced/resultant force so momentum of system is (1) conserved	
	(1) Rocket gains momentum in backward direction	
	Module gains equal amount of momentum in forward direction (1)	
	<u>Kinetic</u> energy of the system increases (1)	
	(Some) chemical energy converted to KE	
	Alternative mark scheme if candidate presumes that the initial total momentum is zero (Max 4) (1)	
	No external/unbalanced/resultant force so momentum of system is conserved	
	(1)	
	Rocket and module have equal amount of momentum and move in opposite directions (after separation) (1)	
	Kinetic energy of the system increases (1)	5
	(Some) chemical energy converted to KE	
	Total for question	5

Question Number	Answer		Mark
4(a)	Velocity/direction changing Or (object is) accelerating Force towards centre of circle	(1) (1)	2
4(b)	 High(er) speed means large(r) force Or small(er) radius means large(r) force (For sharp bends) centripetal/resultant/required <u>force</u> would need to be greater than maximum frictional force Or (for sharp bends) friction cannot provide the (required) centripetal/resultant force 	(1) (1)	2
4(c)(i)	Resolving forces vertically $\underline{N} \sin \theta = mg$ Resolving forces horizontally $\underline{N} \cos \theta = mv^2/r$ Division of vertical equation by horizontal equation to get correct answer	(1) (1) (1)	3
4(c)(ii)	Use of $\tan \theta = gr/v^2$ $\theta = 57^{\circ}$ <u>Example of calculation</u> $\tan \theta = (9.81 \text{ m s}^{-2} \times 18.7 \text{ m})/(11.0 \text{ m s}^{-1})^2$ $\theta = 56.6^{\circ}$	(1) (1)	2
	Total for question		10

Question	Answer		Mark
5(a)(i)	Outward spiral from centre in either direction, minimum of two complete		
	loops (1)	1
5(a)(ii)	Direction consistent with diagram:	,	
	Clockwise path, field out of page		
	Anticlockwise path, field into page (1)	1
5(a)(iii)	Electric field/p.d. between dees causes (resultant) force/acceleration (1)	
	Proton makes half a revolution in half a evale of the a c		
	Or facing dee (always) negative when proton reaches gap		
	Or whenever the proton gets to a gap, the p.d. has reversed	1)	
	or whenever the proton gets to a gap, the p.u. has reversed	1)	
	k.e./speed (only)increases each time the proton crosses the gap		
	Or work done by the field in the gap increases the k.e. (1)	3
		<i>,</i>	-
5(a)(iv)	$Bev = mv^2/r \text{ Or } r = p/Be $	1)	
	$v = 2\pi r/T \tag{(1)}$	1)	
	$T=1/f$ (seeing $f = v/(2\pi r)$ scores MP2 & 3) (1)	
	Or		
	$Bev = mr\omega^2$	1)	
	$v = r\omega \tag{(}$	1)	•
	$\omega = 2\pi f \text{ (seeing } v/r = 2\pi f \text{ scores MP2 \& 3)} $	1)	3
5(a)(v)	Use of $B = 2\pi fm/\rho$ with mass of proton (1)	
0(u)(1)	$f = 1.8 \times 10^4 \text{ Hz}$	1)	2
		_,	_
	Example of calculation		
	$f = eB/2\pi m$		
	$f = (1.6 \times 10^{-19} \text{ C} \times 1.2 \times 10^{-3} \text{ T}) / (2\pi \times 1.67 \times 10^{-27} \text{kg})$		
	$f = 1.8 \times 10^4 \mathrm{Hz}$		
5(b)	At X		
	the idea that 2 particles are produced (1)	
		1	
	One is uncharged/neutral so no track	1)	
	abargad partiala has some abarga as incident partials to conserve abarga		
	Or nath of (new) charged particle changes to conserve momentum	1)	
	() put of (new) charged particle changes to conserve momentum	1)	
	At Y		
	Neutral particle decays into two charged particles.	1)	
		1	
	Tracks curve in opposite directions as particles oppositely charged.		
	Or particles have (equal and) opposite charge to conserve charge		
	Or particles have equal (magnitude of) momenta since their (radius of)		
	curvature is the same. (1)	5
			17
	1 otal for question		15

6(i)	С	1
6(ii)	A	1
6 (iii)	D	1

Question	Answer	Mark
Number		
7(a)	Use of $F=mv/t$ or $F=ma$ (1)	
	Answer = $2.0 \times 10^{\circ} \text{ N}$ (1)	2
	Eg <i>F</i> = 12000 x 57 / 3.5	2
7 (b)	Arrow down labelled mg / W (1)	
	Arrow up labelled eg R /reaction / force from seat	
	Equal length vertical arrows from a clear single point	3
7 (c)	4 <i>m</i> g - <i>mg</i> OR 3 <i>mg</i> (1)	
	$(m)v^2 / r$ seen (1)	
	Answer = 110 (m) (1)	3
	Eg $3mg = mv^2/r$	
	$r = (57)^2 / 3g$	
7(d)	Use of KE / PE conservation (1)	
	Answer = 23 (m s^{-1}) (1)	2
	$E_{a} = \frac{1}{2} m(E_{a}^{2})^{2} = \frac{1}{2} m^{2} m^{$	
	Eg $\frac{1}{2} \frac{1}{10} \frac{37}{5} = \frac{1}{2} \frac{1}{10} + \frac{1}{10} \frac{1}{59}$	
7 (e)	Using $(m)a$ only (1)	
, (0)	Answer $r = 54$ m [allow ecf] (1)	2
	Eg $mg = mv^2/r$	
	$r = (23)^2 / 9.81$	
	Total for question	12

Question	Answer		Mark
Number			
*8	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)		
	Max 6		
	Fixed target		
	There is momentum before the collision so there must be momentum after		
	the collision.	(1)	
	So particle(s) created must have some kinetic energy	(1)	
	So not all KE converted to mass	(1)	
	Colliding beams		
	(If particles have the same mass and speed), total initial momentum is zero	(1)	
	Momentum after collision will be zero	(1)	
	If one stationary particle is created	(1)	
	All of the kinetic energy of the particle is converted to mass	(1)	6
	Total for question		6